The Numerical Solution of Data Assimilation Problem for Shallow Water Equations
نویسندگان
چکیده
The problem on propagation of long waves in a domain of arbitrary form with the sufficiently smooth boundary on a sphere is considered. The boundary consists of ”solid” parts passing along the coastline and ”liquid” parts passing through the water area. We assume, free surface level observation data on ”liquid” boundary is known. In general case the boundary condition on ”liquid” part of boundary contains unknown boundary function, which must be found together with component of velocity vector and free surface level. We put an assimilation observation data problem by Prof. V.I. Agoshkov methodology. To solve our ill-posed inverse problem an approach, based on optimal control methods and adjoint equations theory, is used. Numerical solution of direct and adjoint problems is based on finite elements method. Parallel software using MPI is discussed.
منابع مشابه
A BOUNDARY-FITTED SHALLOW WATER MODEL OF SIMULATE TIDE AND SURGE FOR THE HEAD BAY OF BENGAL – APPLICATION TO CYCLONE SIDR (2007) AND AILA (2009)
Severe Tropical Cyclones associated with surges frequently hits the coastal region of Bangladesh. For a reliable hydrodynamic model to simulate the severity of such cyclones, it is necessary to incorporate the meteorological and hydrological inputs properly. In order to incorporate the coastlines and the island boundaries properly in the numerical scheme a very fine grid resolution along the co...
متن کاملNumerical Simulation of Free Surface in the Case of Plane Turbulent Wall Jets in Shallow Tailwater
Wall-jet flow is an important flow field in hydraulic engineering, and its applications include flow from the bottom outlet of dams and sluice gates. In this paper, the plane turbulent wall jet in shallow tailwater is simulated by solving the Reynolds Averaged Navier-Stokes equations using the standard turbulence closure model. This study aims to explore the ability of a time splitting method ...
متن کاملPOD/DEIM reduced-order strategies for efficient four dimensional variational data assimilation
This work studies reduced order modeling (ROM) approaches to speed up the solution of variational data assimilation problems with large scale nonlinear dynamical models. It is shown that a key ingredient for a successful reduced order solution to inverse problems is the consistency of the reduced order Karush-KuhnTucker conditions with respect to the full optimality conditions. In particular, a...
متن کاملDevelopment of an Implicit Numerical Model for Calculation of Sub and Super Critical Flows
A two dimensional numerical model of shallow water equations was developed tocalculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady stateequations were discretized based on control volume method. Collocated grid arrangement was appliedwith a SIMPLEC like algorithm for depth-velocity coupling. Power law scheme was used fordiscretization of convection and dif...
متن کاملDevelopment of an Implicit Numerical Model for Calculation of SUB-and Super-Critical Flows
A two dimensional numerical model of shallow water equations was developed to calculate sub and super-critical open channel flows. Utilizing an implicit scheme the steady state equations were discretized based on a control volume method. Collocated grid arrangement was applied with a SIMPLEC like algorithm for depth-velocity coupling. A power law scheme was used for discretization of convection...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011